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Abstract—Driver State Monitoring Systems (DSMS) play a
crucial role to determine whether the driver is prepared to take
control of the vehicle. In this paper we present a cost-efficient,
context-aware system based on smartphones that supports the
driver in the driving task by monitoring their attention and
detecting pedestrians, vehicles and drowsiness. The detection
rates obtained, with 85% in the case of pedestrians and over
90% in the case of vehicles, along with the results of the driver
state measured by eye movements proved the viability of the
proposed approach to provide situational awareness in the novel
paradigm of autonomous driving.

I. INTRODUCTION

In conditional automation a driver’s response to a Take
Over Request (TOR) is expected in case of a sudden
event [1]. Driver State Monitoring Systems (DSMS) there-
fore play a crucial role to determine whether the driver is
prepared to take control of the vehicle.

According to a report from Pew Research [2], in addition
to using mobile phones to make calls, over half of mobile
phone users use their phone to retrieve information and
over 40 percent for entertainment. For this reason, mobile
phones are most of the time connected to the nearest mobile
phone network tower currently providing coverage with
uninterrupted registering of user location. In the context of
digital technologies that result from pervasive computing,
today’s smart devices already integrate a variety of cost-
efficient embedded sensors (i.e. accelerometer, digital com-
pass, gyroscope, GPS, microphone, camera) that facilitate the
acquisition of data which can be used to study driver behavior
for road safety purposes [3]. According to the data from In-
ternational Data Corporation [4], the smartphone market has
been dominated by Android for the last four years. Relying
on the sensor technology available in Android devices and
to promote collision avoidance and road safety, this work
implements a DSMS that also considers road conditions
for later dissemination to the driver through appropriate
warnings. We intend to support the driver in the driving tasks:
control of speed, distance to leading car, traffic observation
and other road users action prediction. Drowsiness and hypo-
vigilance might lead to reduced situational awareness while
manually operating a vehicle or being involved in other tasks
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in conditional automation. The system detects driver state by
measuring eye movements, which can tell us how inattentive
or drowsy the driver is.

Relying on the application in [5], an application to monitor
driver attention through a context-aware system relying on
the sensor technology that modern smart devices provide, we
present in this paper a system with additional functionality
and improved algorithms for the detection of pedestrians,
vehicles and drowsiness.

II. RELATED WORK

Several companies have commercialized systems to assist
the driver in the driving task. In the area of visual information
processing, the company Mobileye offers detection of road
users such as pedestrians or animals and also other objects
such as street signs and traffic lights [6].

More cost effective mobile applications focus on face and
eye detection. Most of them are intended for entertainment
purposes so that they can be shared on social media applica-
tions [7] but others are a component of projects that aim to
develop a robust eye localization platform based on low cost
hardware [8]. Making use of the front camera of a mobile
device, further applications scan the users eye retina patterns
for identification purposes or detect user’s eye movements to
use as input modality to interact with a system [9].

In the field of Driving Assistance Systems the use of
mobile phone sensors to acquire Floating Car Data (FCD)
for the evaluation of traffic conditions and driving perfor-
mance [3] has also been a topic of research. Some addition-
ally use steering wheel angle, like the attention assist system
by Mercedes-Benz based on visual driving data and acoustic
feedback [10]; the driver alert control by Volvo [11], based
on road features tracking and driving data or the Lexus driver
monitoring system [12] and BMW driving assistant [13], that
incorporate systems for eye tracking and automatic braking
in case of an on road obstacle detection.

In line with this, cost effective mobile applications include
the capability of detecting road traffic signs and monitoring
the road alerting the driver about potentially unsafe situa-
tions, such as imminent vehicle collision, lane departure and
speed limits [14], [15], [16].

One of the factors for driver’s inattentiveness can be
fatigue. The authors in [17] described several prevalent
indications of fatigue in drivers such as yawning or slower
reaction and responses. They also stated that different indi-
viduals showed different symptoms to varying degrees and
therefore, there is no concrete method of measuring the level
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of fatigue. It can therefore be understood that combined
techniques of extracting fatigue related patterns based upon
computer vision, driving performance and driver’s physio-
logical characteristics provide the most accurate results.

III. GENERAL DESCRIPTION

The system presented continues and extends the work
presented in [5]. It put forth a novel architecture developed
for mobile phones which is able to analyze road conditions
and take action, requesting the driver to take control of the
vehicle after gaze behavior analysis. The work presented in
this paper goes beyond this paradigm, providing drowsiness
detection and implementing advanced road user detection
i.e. vehicles and pedestrians. Thus the application is able
to analyze the road state, providing computer vision-based
vehicle and pedestrian detection with accurate monocular-
based localization. Furthermore, the application provides
state-of-the-art drowsiness detection, improving driver be-
havior analysis in comparison with the previous version.

Pedestrian detection is based on the approach presented
in [18] and adapted for current development. In addition, a
novel vehicle detection based on a monocular camera and
the internal sensor was developed. The distance estimation
algorithm allowed the distance to the preceding vehicles to be
provided. This distance can be used for further identification
of risks, thus enabling the system to alert the driver of an
emergency.

The device is configured to retrieve information from
cameras, rear and front. The rear camera is facing the exterior
of the vehicle and is used for road monitoring tasks, and the
front camera is facing the interior and is used for driver
monitoring.

IV. ROAD MONITORING PROCESS: PEDESTRIANS AND
VEHICLES DETECTION

In this section, we present a novel vehicle detection system
based on a low-cost mobile application, based on three
different stages: vision-based detection, distance estimation
and vehicle tracking. First, the vehicles are identified based
on a robust vision-based algorithm. Second, the distance
estimation is performed based on the well-known pinhole
model and utilizes the internal sensors of the system. Finally,
the tracking algorithm provides time consistency.

A. Vision-based Vehicle Detection

The vision-based vehicle algorithm is based on the use
of Haar-Like features, as presented by Viola and Jones in
[19] and performs calculations by means of fast operations
of additions and subtractions of simple image features and a
sequential cascade of classifiers for fast and reliable object
detection. This system provides very good results with the
detection of objects with stable forms by combining layers
of simple classifiers.

The weak classifier that they proposed for a given feature
follows the form:

L, if pifi(x) < pib;
0, otherwise

hy(x) = (1)

where hj(x) is the classifier, f;(z) is a given feature, 6; is
the threshold and p; indicates the inequity direction.

B. Distance Estimation

Location estimation takes into account three paradigms.
First, a pinhole-based estimation provides a basic distance
estimation, assuming flat world. Later, the internal sensors of
the system correct the distance estimation according to the
position of the device. Finally, a tracking stage provides more
accurate localization and time consistency, this tracking stage
is composed by a tracking algorithm and data association.

1) Pinhole Model: Pinhole is based on simplification of
the sensor of the camera as a single point in the space and the
flat ground assumption. By means of these simplifications,
it is possible to reach the model described in (2), which
describes the relation between the world points in Cartesian
coordinates (X,y,z) and the image points (u,v),
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where the camera image coordinates are represented by u
and v, in pixels. (ug,vg) is the center of the image, f, and
fv are the focal length for every coordinate in the image.
x,y, and z are the Cartesian coordinates with the sensor of
the camera as origin, and ) is a scaling factor.

The main limitation of the Pinhole model are the three
solutions (x,y and z) which cannot be solved with the
available information (u,v). This requires the fixation of one
coordinate in order to provide a solution. In this case, it
is assumed that the vehicles are located within the ground
plane, and the mobile phone has a fixed location (at the
windshield, assumed to be 1.4 meters, however it can be
configured in the app). All this allows to assume all the
detection to be located at z=-1.4 meters.

2) Distance Estimation Correction: Internal sensors in-
cluded in smartphones allow the retrieval of the device’s
position, including rotation angles. Figure 1 describes how
changes in these angles affect the estimation of distance to
other vehicles. Equations (3), (4), (5) and (6) describe it
mathematically.

Fig. 1. Rotation angles according to the position of the device (left) and
their effect in the vehicle detection (right).
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where, A ® O are the rotation matrices according to the
camera axis, with Ad, Ay and Af corresponding to the in-
crement of the Euler angles roll, pitch and yaw, respectively.
3) Tracking Algorithm: The tracking procedure is based
on the use of a Kalman Filter (KF) and constant velocity
model. This model has the limitation of the lineal movement
definition, however the high frequency of the detection and
the definition of the inaccuracies of the lineal model in
the system error allows this limitation to be overcome.
Furthermore, previous works [20] proved the viability of this
simplification, which is relevant for use in a smartphone.
Equations (7) present the system error, which represents
the linearization error by modeling the changes in speed
(acceleration) as system noise, (8) is the measurement error.
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where a is the maximum acceleration and dt is the time
elapsed among image captures, calculated for each frame.
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Finally, the constant velocity model is represented in the
following equations:

x
5 v
X=|7" 9
y )
Uy
x
Y = 10
[y] (10)
1 0 00
H[o 0 1 0} an
1 dt 0 O
0 1 0 dt
A= 0 0 1 0 2
0 0 0 1

where X is the state vector, with x,y the location in meters,
and v, and v, the velocity in meters per second. Y is the
measurement vector which retrieves only the location of the
detected vehicle. H is the observation model, and A is the
state transition matrix of the model.

4) Time Consistency: Time consistency is obtained thanks
to an association technique, is used to associate new detection
with previous detections. This phase was designed based
on Nearest Neighbor (NN), as depicted in [20]. The NN
algorithm was based on the use of the distance estimation
obtained by the KF. The location of the new detection is
obtained by the distance estimation algorithm. An assign-
ment matrix is designed in each process and based in the
minimization of the Euclidean distance.

V. DROWSINESS DETECTION

Blink duration and interval, delay of lid reopening, and
lid closure speed are indicators of sleepiness [21]. A psycho-
physiological measurement associated with the assessment of
fatigue [22] is the blink rate per minute. According to [23],
the normal average would be about 15 to 20 blinks per
minute. In this work we rely on eye closed phase duration
along with the the haar-cascade classifiers to estimate and
detect drowsiness, as presented in subsection IV-A adapted
for face, right eye and left eye detection.

To determine the driver status regarding fatigue and
drowsiness, the application used the front camera of the
mobile device to locate the driver’s face position and evaluate
the duration of the closed eye phase, according to the
PERCLOS method as described in [24] and used in [25].
PERCLOS calculates the percentage of eye closure time.
If the value exceeded the threshold, the system triggered
an alarm to make the driver aware of the situation. The
alarm did not stop until the calculated value drops under
the threshold, i.e. the driver no longer showed signs of
drowsiness. Threshold was set, as defined in [24] at 21%.
Figure 2 shows the algorithm for drowsiness detection.

VI. SYSTEM EVALUATION RESULTS

To evaluate the performance of our implemented applica-
tion regarding object detection rate, accuracy and time, we
performed several tests with a vehicle in which a mobile
device was installed in the dashboard, at a distance lower
than 55 cm. The tests were performed with two different
Android smartphones:

A) Samsung Galaxy Fame (480p@25fps Primary=5MP,
Secondary=VGA, RAM=512 MB)

B) Samsung Galaxy A5 with higher image processing
performance and better camera resolution (1080p@30fps
Primary=13 MP, Secondary=5MP, RAM=2 GB).

A. Pedestrian Detection Rate

For the evaluation of the performance of the pedestrian
detection algorithm, 65 different scenarios were tested with a
maximum number of 4 pedestrians per scenario in a detection
range from 5 to 30 meters. Here the tests focused on the
detection rate, while tests performed in [18] focused on the



Eye detection
process

|

Calculate %
closure phase time
(PERCLOS)

PERCLOS = th?

Yes

Trigger alarm

Fig. 2. Implemented Algorithm for Driver Drowsiness Detection
D 250
c E]
o i 200 E
g | '

"E 3 I g Y 150 E
o 2 100
5 . 6
: h éﬁ éi EMJ .
=l o £
; 15 91317212529333741454953576165 =
Driving Situation

 Total e Detected pmmm FALSE Time

Fig. 3. Pedestrians detection rate and time for device B

distance measurement. According to the device performance,
the detection rate with device B was higher. Figure 3 shows
that using this device 85.5% of pedestrians were detected,
and the rate of false detection constituted 2.4%. A reduction
in the detection time was observed depending on the RAM
and CPU power. The detection time ranged from 118 to
192 milliseconds, the average detection time being 146.8
milliseconds. Figure 4 shows some visual results of the tests.

In addition, we compared the results of device A using the
single detection algorithm with those of the algorithm with
the tracking stage. As illustrated by the following graphs,
the detection process time benefits from the additional pro-
cessing with the tracking stage in terms of prediction, cor-
rection, and data update. The mean time for the total process
increased from 159.4 ms to 192.8 ms (Figure 5). However,

Fig. 4.

Pedestrian detection with device B

the detection rate also increased from 45.7% to 78.2% and
the number of false detected objects decreased from 17.3
to 2.5 percent (Figure 6). Thus the tracking stage increased
the performance of the overall system. Furthermore, it was
proved that the lower frame rate obtained with the A device
limited the detection rate.
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Fig. 6. Time performance of device A with and without applying tracking
stage

B. Vehicle Detection

For the evaluation of the vehicle detection algorithm, we
tested 55 different scenarios with a maximum number of
2 vehicles per scenario in a detection range from 5 to 30
meters. According to the device performance, the detection
rate with device B was higher. For device B, it can be seen
that 90.4% of vehicles are detected and the rate of false
detection constituted 5.2% (Figures 7 and 8). A reduction
in the detection time could be observed depending on the
RAM and CPU power. The detection time ranged from 41
to 62 milliseconds, the average detection time being 49.7
milliseconds.
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Fig. 8.

Vehicles detection example with device B

C. Drowsiness Detection

To evaluate the performance of our implemented applica-
tion regarding drowsiness detection, a test was performed
on 5 drivers using a Samsung Galaxy A5 (Android ver-
sion 6.0.1) with high image processing performance, and
high camera resolution (1080p@30fps Primary=13 MP, Sec-
ondary=5MP, RAM=2 GB).

We evaluated the application in a 1-minute scenario for
each driver, first in the morning (around 10 A.M) and then
after a long period of working or in the evening (around
10 P.M). According to the device performance, the detection
quality has a direct relationship with the camera quality. In
the morning test the value indicating closed eye duration did
not exceed 0,100 ms/min. The average calculated value for
the 5 drivers was 0,084, the minimum being 0,067 ms/min
(driver 4) and the maximum being 0,098 ms/min (driver 1).

As an example we show the data for driver 2 (Figure 10).
In this case the closed eye duration phase value did not
exceed 0,100 ms/min in the morning.However, in the evening
it increased to almost 0,300 ms/min. This correlates with
previous findings which showed that a lower blink frequency
(as a consequence of a higher closed eye duration phase) is
an indicator of drowsiness [24], proving the usability of the
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Fig. 10. Closure phase time in last 60 seconds for driver 2 in the morning
and in the evening.

VII. CONCLUSION

The paper presents a novel approach for vision-based road
user detection and distance estimation. Furthermore, it also
provides vision-based drowsiness detection. The algorithms
have been implemented for smartphone devices, adapting to
its work limitations and taking advantages of the sensors
included. The algorithms were included in a previously
presented application, designed to monitor drivers during
the autonomous driving experience and inform them to take
control of the vehicle if the situation demands and they are
in a condition to do so.

The detection rates obtained, 85% in the case of pedes-
trians and over 90% in the case of vehicles with a low
false positive rate. Furthermore, the results of the drowsiness
detection proved the performance of the algorithm. All the
tests performed proved the viability of the smartphone and
computer vision-based algorithms in order to implement an
advanced application able to provide situational awareness
in the novel paradigm of autonomous driving by means of a
smartphone.



In future works distance estimation will be used to identify
and adapt the alarms to the movement of the vehicle in
real time. Moreover, further tests will be performed to the
drowsiness algorithm, with longer driving times, under a
simulator, providing further information of the performance
of the system in real drowsiness scenarios.
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