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Abstract—Assessment of the driver’s state and the driving
environment is essential in promoting road safety in both manual
and automatic driving paradigms where the monitoring tasks are
either performed by the driver or by the system. Within this
work, we present a cost effective mobile application to measure
gaze behavior and analyze road conditions for a request to take
vehicle’s control in case of an automatic driving or to avoid
inattentive driving in a manual driving paradigm. We evaluated
the application under daylight conditions. Results showed a high
rate of detections in a short period of time.

I. INTRODUCTION

The association for safe international road travel states that
road crashes account for 2.2 per cent of all deaths globally
and predicts that road injuries will become the fifth leading
cause of death by 2030 [1]. As reported in 2013 by the
International Organization for Road Accident Prevention [2],
human error accounts for 90 percent of the road accidents.
Over the years, different measures have been investigated
to reduce the rate of accidents due to human errors. The
introduction of autonomous vehicles represent an opportunity
to continue working for increased road safety, namely because
the automation will be in charge of driving sub tasks such
as navigation, guidance and control that have been so far
performed by the driver and whose intervention will not be
required anymore.

According to the international levels of driving automation
classification for on road vehicles of SAE [3], in conditional
and high automation steering, acceleration, deceleration and
the task of monitoring the driving environment are performed
by the automated driving system. A response from the driver
to a Take Over Request (TOR) in case of an unexpected
road situation is expected in conditional automation. In high
automation however, the automated driving system maintains
the vehicle’s control depending on the driver’s response to the
request.

Several studies have shown that drowsiness and hypo-
vigilance while manually operating a vehicle frequently occur
during highway driving, and might be responsible for serious
road accidents [4]. A long time driving under same road
conditions contributes to a decrease of driving workload and
a consequent driver situation awareness reduction. This hypo
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arman4u@gmail.com, olaverri@technikum-wien.at

∗ Corresponding author

vigilance also occurs in highly automated driving and it has
to be taken into account when a vehicle control is expected
from the driver.

Driver State Monitoring Systems (DSMS) are automatically
triggered when the driver’s attention is taken away from the
road for a period of time that is deemed unsafe. In high
automation driving, DSMS play a crucial role to determine
whether or not the driver is prepared to take control of the
vehicle.

In this paper, we focus on monitoring the driver’s attention
to the road through a context aware system relying on the
sensor technology that modern smart devices provide. We
develop a cost effective application that can be used in a
manual and high automation driving paradigm and determines
the visual attention of the driver based on the gaze location,
according to [5]. The application additionally measures the
response to a conversation started by an implemented evaluator
function. Moreover, as the current technology used to detect
construction zones bases on the online acquisition data from
maps and databases related to roads under construction [6],
our application is particularly useful for detecting objects
that reflect information not available in maps due to their
temporary nature (such as construction zones). The cost-
effective, ubiquitous use of our approach makes it particularly
appropriate to be used in every vehicle independently of the
number of automatic features included in it.

The remainder of this paper is organized accordingly: The
following section presents related work in the areas of driving
assistant systems and cost efficient mobile applications. Sec-
tion III describes the application requirements and functioning.
Section IV describes the driving paradigms addressed. Sec-
tions V and VI describe the monitoring processes for the road
and the driver. Sections VII presents the evaluation results and
section VIII concludes the paper.

II. RELATED WORK

In a vehicular context, some applications intend to decrease
the risk of drowsiness in a road context using lights [7] or
sounds and vibrations [8] to keep the driver awake. Others
demand driver interaction to measure the reaction time to
respond to a sound stimuli [9].

Recent approaches take advantage of Advanced Driving As-
sistance Systems features for obstacle detection and collision
avoidance based on radar, camera, and vehicle sensors and
include driver monitoring based on eye-tracking and driver
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performance systems. In this context, an automated driver-
assistance system was proposed in [10]. The system responded
to driver’s actions and at the same time determined the driver’s
observations and inattentiveness based on driver’s eye gaze.

Smart phones have also recently been used to monitor the
driver using cameras to estimate the eye gaze direction as an
indicator of driver attention. The authors in [11] processed
several input video frames and used facial characteristics to
build a set of Support Vector Machines (SVMs) to detect
and localize the face, and estimate head pose relying on the
methodology in [12]. In a further application both road and
driver were monitored [13] to detect distracting and driving
behavior in real time (i.e. drowsy driving, tailgating). The
application used embedded sensors such as inertial sensors
to take into account potential blind spots.

The system we propose, scans the road via the back camera
to gain knowledge about potential construction zones that are
marked through orange traffic cones. As the authors in [13]
pointed out in their work, current smart devices are still
not capable of processing streams from both the front and
rear cameras simultaneously. Therefore, our application also
switches between both the front and rear phone camera thanks
to a context-aware algorithm focusing on both, manual and
automatic driving paradigms.

In a computer vision context, the estimation of the orienta-
tion of head pose affects the ability to characterize the gaze
direction [14]. To this end, we perform a characteristic analysis
of the driver’s head orientation and face and combine several
approaches in order to: a) monitoring driver behavior and b)
avoiding inattentive driving conducts through feedback about
unsafe driving actions as proposed in [15]. In the next sections
we describe the system architecture of our tool based on the
Android operative system (OS).

III. SYSTEM REQUIREMENTS AND FUNCTIONING

The application uses Android SDK API Jellybeans version
4.1.x. It supports the front and back camera of smart devices to
acquire the required data. The accelerometer and GPS sensors
integrated in these devices are used to make sure that the
application is only monitoring the driver when the vehicle
is in motion in order to avoid annoying situations in which
the system warns the driver when the vehicle is stopped (e.g.
waiting for a red traffic light to turn green).

After the extraction of data from the frames and relying on
computer vision techniques to process the images detected, the
system informs the driver by different output methods (i.e. a
beep sound, speech) in the event that a target has been detected
on the road. Furthermore, the system allows the user to easily
configure the app in order to meet his/her expectations for
manual or automatic driving modus by assigning the required
variables with the most proper values for each particular case.

The application requires the mobile device to be located in
front of the driver with a good holder and right alignment at
a distance lower than 55 cm to ensure an accurate calibration
in the area where both eyes are going to be tracked. Figure 1
shows the set up in the vehicle with the mounted smartphone

Fig. 1. In-vehicle location of the smart phone for a smooth face characteristics
detection

Fig. 2. Flowchart for the automatic and manual driving paradigms

in which the driver’s face and eyes have been detected. In
a similar way to the work presented in [16] our application
did not require high accuracy or robust tracking, so gaze
tracking was performed using the iris. For the application
development we aimed for a separate layered structure. We
monitored the driver through the detection of face and eyes
and the road situation through the detection of construction
zones and pedestrians. Orange traffic cones were targeted for
detecting construction zones because of their extended use
(also for marking road sections that require special attention
by the driver) and easy placement on roads.

IV. DRIVING PARADIGMS

Depending on the selection the driver has made in the user
interface regarding an automatic or a manual driving, are the
road or the driver monitoring processes activated by default.
The flowchart in figure 2 illustrates the process. The options
in the submenus enable the activation of additional features.

A. Automatic Driving Paradigm

As previously mentioned, in vehicles with a degree of high
autonomy the driver does not need to permanently monitor the
road conditions. However, challenges for the Human Machine
Interface [17] and Human Factors communities [18], [19]



Fig. 3. Flowchart for the Automatic Driving Paradigm

are derived from required vehicular control changes (Take
Over Request). In order to contribute to the efficiency of the
changing process, our application distinguish two use cases, a
road scenario with a construction zone and a pedestrian on the
road that require this control change. In case an object has been
detected on the road and the system evaluates that the road
situation requires the attention of the driver and even it was
deemed appropriate to trigger a TOR, the system monitors the
driver attentiveness to the road and verifies the driver’s status.
To assess the road situation the number of detected objects in
last 3 seconds was considered to avoid noise or false positives.
The followed procedure is described below and illustrated in
Figure 3.

• Scanning the road via the back camera to gain knowledge
about the road environment. Section V describes the
process.

• Determining the visual attention of the driver based on
a) his/her gaze location, and b) response to a succession
of words uttered by the system’s evaluator function.
Section VI describes the process in detail.

B. Manual Driving Paradigm

In order to detect the driver’s visual attention to the road
in a manual driving modus using the mobile application, we
applied the computer vision techniques for image processing
and extraction of data explained in Section VI and assessed the
driver status by the number of detected eyes for each frame.
An alarm was triggered if face and eyes were not detected by
the system in a time frame that exceeded 2 seconds, according
to the eyes-off-road time recommended by the NHTSA for
glances away from the roadway [20]. This eye monitoring
process corresponded to the last 25 continuous frames. The
system enables the change of the configuration to a shorter

time from 2 seconds to 1 second if the user wishes a stronger
monitoring. In this case, the driver can activate the ”Sensitive”
button.

V. ROAD MONITORING PROCESS

The road monitoring process is activated by default as first
when the automatic driving option has been selected. To detect
pedestrians and/or cones, the back camera of the mobile device
obtained the current frame from the road and transmitted it to
the processor. This road monitoring process was constantly
applied until the aimed object pedestrian or orange cone was
detected. Once the object is detected the driver attention to the
road will be evaluated. To reduce the noise/false detections,
the number of detections occurred in the last 3 seconds was
stored and recognized as real detections if this number was
higher than 10. The algorithm we used for pedestrian and
cone detection based on a classifier with multiple stages of
filters (Cascade) working with Haar-Like features. It consisted
of a detection window that slided around the whole image
to detect the target object. If the input region fails to pass
the threshold of a stage, the cascade classifier will reject the
region. Otherwise, it will be classified as a potential target
object and further processing will be applied.

A. Pedestrians detection

Pedestrians were detected building upon the haarcas-
cade fullbody classifier [21] confining the search area by
removing 15% from the left and right sides (sidewalk) and
20% from up and down (sky and dashboard). The classifier
is designed so that it can be easily resized in order to be
able to find the objects of interest at different sizes, which is
more efficient than resizing the image itself. We set the sliding
window with 5% of the frames width and 10% of frames
height for the minimum size of any pedestrian in the image.
Although this small sliding window requires more detection
time and reduces the frame rate to 4 fps, it increases the range
of detection. For example, a driver in a vehicle at a speed of
50 km/h that uses our system an detects a person at a distance
of 40 meters, will have around 3 seconds to react. Equation 1
shows the calculation of the ROI for road monitoring.

Winterest = Wtotal −Wreduced = 100%− (15%(from left)

+(15%(from right)) = 70%

Hinterest = Htotal −Hreduced = 100%− (20%(from top)+

(20%(from bottom)) = 60%

(1)

where:
total area= Width(W )×Height(H) = 100%
interest area= Winterest ×Hinterest = 42%
reduced area= 100%− 42% = 58%

B. Orange Traffic Cones Detection

We built our own classifier to detect the orange cones for
the construction zone. To this end, we first collected samples



Fig. 4. Pedestrian (A) and cone (B) detected by the application.

of images for orange cones by recording several short videos
(approx. 120 seconds) of construction zones in Vienna that
showed the objects from different perspectives. Afterwards, we
developed an OpenCV application (in VC++.NET) to extract
images from the videos and then manually verify if the images
were appropriate. In case of a similarity of an image with the
previous one, it was deleted. We then scaled all the images to
the same size to extract the objects features in form of vectors
of measurements. The total number of images consisted of
125 positive samples. The same method was applied to classify
the negative samples (414 images). Finally, relying on [22] we
created a classifier that we trained using the images collection.
Figure 4 shows images of pedestrians and traffic orange cones
detected in Vienna by the application.

VI. DRIVER MONITORING PROCESS

The driver monitoring process is activated by default as first
when the manual driving option has been selected in the user
interface. If the driver’s attention is taken away from the road
for a period of time that is estimated unsafe a warning is
automatically triggered. To monitor the driver attentiveness
to the road, we relied on two methods: the characteristic
analysis of driver’s face to measure gaze behavior and the
response to a conversation started by the system based on
speech processing techniques. As previously mentioned the
driver monitoring is activated in the automatic modus after
the system has determined from the road monitoring process
that a TOR might be necessary. Details of the functioning in
each case are described below.

A. Gaze Behavior Detection

To determine the driver status regarding the gaze location,
the application used the front camera of the mobile device to
locate the driver’s face position. After the frame reception, the
application analyses if the driver’s face was detected. Detection
only occurs when the driver’s face is located in front of the
camera and his/her gaze is directed to the road.

Fig. 5. Original frame area with the sections removed and face detected in
the reduced area

Fig. 6. Calculation of the Region Of Interest for face and eyes detection

To obtain the required classifiers to detect the face and
eyes of the driver, we applied the OpenCV library for object
detection using Haar Feature-based Cascade Classifiers relying
on the original and improved versions of the face and eye
detection algorithm by [23], [24], [25].

To detect the face we extracted an approximate area for the
face to be located. We then removed 40% of the frame (20%
on the right and 20% on the left side) and 20% of its height
starting from the bottom part of the original frame. Afterwards
we searched for the face in this reduced area. Figure 5 shows
the original frame with the sections removed and the face
detected in the reduced area.

After the face was detected, a function was applied to detect
the right and left eyes. Again, we estimated a Region Of
Interest (ROI) within the general face geometry focusing only
on this area instead of searching the whole frame in order to
reduce the system resource usage. This area reduction enabled
us to efficiently detect both eyes and within them, in the
reduced area, their iris through a function that distinguished a
circular structure in the center of the eye. Figure 6 illustrates
the extraction process for the calculation of the ROI for face
and eyes detection.

The detection process (Figure 7) occurs for a specific period
of time during which the driver’s face and eyes are monitored
by an attentiveness rating system. The rating scale ranges from
50 to 0 points starting with the maximal value and decreasing
depending on the grade of the attentiveness detected. The score
decreases one point every time that the front camera detects
the face. To rate a detection of both, face and eyes, the score
decreases one additional point. In case, neither the face nor
the eyes are detected the score is incremented by one. When
the maximal attentiveness has been reached (score = 0), the
process starts monitoring the road again. If the score is higher



Fig. 7. Flowchart for the driver monitoring process

than 0 the system warns the driver so that his/her attention is
being focused in the road and the eyes can be detected again.

B. Voice Interaction

As illustrated in the flowchart for automatic driving in Fig-
ure 3 voice interaction is activated when the road monitoring
conditions require the driver to take over the control of the
vehicle. In this case, to monitor the driver attentiveness to
the road, the system started a conversation with the driver by
asking aloud: “Are you looking at the road?”. At the same time
the question was displayed on the smart device screen and the
system waited until a voice answer was detected from the
driver. The language used was English. The answer was then
converted into the text and analyzed via a linguistic function.

VII. SYSTEM EVALUATION RESULTS

To evaluate the performance of our implemented application
regarding object detection rate, accuracy and time, we per-
formed several tests with a vehicle and 3 drivers under daylight
conditions with two different Android Samsung smartphones:
a) one Samsung Galaxy Fame (480p@25fps Primary=5
MP, Secondary=VGA) “a” and b) one Samsung Galaxy A5
with higher image processing performance and better camera
resolution (1080p@30fps Primary=13 MP, Secondary=5MP)
“b”.

A. Cones detection rate

We tested 47 different scenarios that consisted of a variety
of cone sizes in a detection range from 5 to 15 meters. The
total number of detections with device “b” (154) was higher
than with device “a” (146). Device “a” detected 54.1% of
all the cones with a rate of 11.3% false detections or system
classification of other objects as cones and device “b” detected

Fig. 8. Orange traffic cones detection rate and time for device “b”

70.7% of the cones total number with a rate of 11% of false
detections

Per test case, the device with better image processing
performance “b” detected more orange traffic cones in total
(max. 8), but device “a” detected at least one cone in all the
situations (max. 3) as well. Figure 8 shows the detection time
and rate with device “b” for each individual case
The detection time ranged from 138 to 347ms, being the
average detection time of 209.2 milliseconds.

B. Pedestrians detection rate

For the evaluation of the pedestrians detection algorithm,
we tested 87 different scenarios with a maximum number of
11 pedestrians per scenario in a detection range from 5 to 40
meters. In the previous section we showed that the detection
rate was higher when performed with device “b”. Therefore,
we focus in this section on results obtained with this device.
70.3% of all the pedestrian were detected and the rate of false
detections constituted 16.1%. A reduction in the detection time
could be appreciated depending on the CPU power. In each
round a total of maximum 9 pedestrians were detected. The
detection time ranged from 109 to 305 ms, being the average
detection time of 185.3 milliseconds.

C. Face and Eyes Detection Rate

The average of the face detection time for drivers 1, 2
and 3 were 6.1ms, 7ms, and 5.6ms respectively. We could
detect some outliers in the detection rate that we associated
with external processes of the OS. Regarding the detection
rate of the eyes in the 3 drivers, results ranged from 4 to
18 milliseconds and almost did not differ among the drivers.
Remarkable were the differences between the detection rate
depending on the device used. As shown in Figure 9, device
b required more time to detect the eyes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an application to monitor driver
behavior and assess road conditions for an automatic and



Fig. 9. Face detection time with device “b” (A) and eye detection time for
driver 1 (B)

manual driving paradigms using mobile smart devices. Eval-
uation results showed a high object detection rate within
few milliseconds of time. As we previously mentioned the
detection time differed depending on the device used. This
was due to the higher resolution of device b that needed more
time to process the higher number of pixels and detected more
objects. A device with a lower camera quality detected the
target objects as well. Therefore, a good camera is not required
to apply the approach proposed in this paper. The number
of false object detections, could be reduced by training the
cone classifier with more samples. Future work will include
the storage of the detected construction zones in an online
database that will elicit geographical information of a given
construction zone location in real-time.
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